If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+25y-30=0
a = 5; b = 25; c = -30;
Δ = b2-4ac
Δ = 252-4·5·(-30)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-35}{2*5}=\frac{-60}{10} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+35}{2*5}=\frac{10}{10} =1 $
| 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 5y^2+25y-30=0 | | 6(x-1.5)=46.50 | | -1+n2=-4 | | -1+n2=-4 | | -1+n2=-4 | | -1+n2=-4 | | -1+n2=-4 | | -4=-5+3=9t | | -4=-5+3=9t | | -6=-2+c | | -6=-2+c | | (2x-7)°(2x+6)°(5x+1)=x | | -0.4x=-1 | | -0.4x=-1 | | n+(n-512)+3(n-512)=47645.25 | | n+(n-512)+3(n-512)=47645.25 | | 8m+5=-27 | | 7x-4-3x=-16 | | 7x-4-3x=-16 | | 7x-4-3x=-16 | | 7x-4-3x=-16 | | 7x-4-3x=-16 | | 6n+6=7n-1 | | 6n+6=7n-1 |